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Abstract
The nonrelativistic quantum scattering problem for a non-central potential
which belongs to a class of potentials exhibiting an ‘accidental’ degeneracy
is studied. We show that the scattering system under consideration admit the
Lie algebra so(5, 1) as the potential algebra. The scattering amplitude is then
evaluated using purely algebraic techniques to give the closed result. It is
expressed in terms of associated Legendre functions.

PACS numbers: 03.65.Nk, 02.20.−a

1. Introduction

The occurrence of ‘accidental’ degeneracy in the energy spectrum (i.e. a degeneracy of the
energy levels not connected with obvious geometric symmetries of the Hamiltonian) has caught
the attention of many physicists since the pioneering paper [1] appeared. Many examples of
potentials with accidental degeneracy in the energy spectrum are now known; the paper [2]
lists a variety of potentials leading to accidental degeneracy. It turns out that they possess
properties making them of special interest; for instance, all these potentials admit the separation
of variables in several coordinate systems and possess dynamical symmetries responsible for
separability of the Schrödinger equation. Moreover the ‘accidental’ degeneracy occurring in
these problems have been explained in terms of dynamical symmetries. The best known of
these potentials are Coulomb [1], oscillator [3] and Hartmann potentials [4]. The latter results
from adding a repulsive potential proportional to 1/r2 sin2 θ to the Coulomb one. It was first
studied by Hartmann to describe axial symmetric systems such as ring-shaped molecules.

The potentials classified in [2] involve potentials that may be written in spherical
coordinates as f (θ, ϕ)/r2 + V (r), where f (θ, ϕ) are certain functions of θ and ϕ. They
are exactly solvable if V (r) are Coulomb, harmonic oscillator or null potentials. (By exactly
solvable, one means those Hamiltonians for which the spectrum, eigenfunctions and the
scattering matrices can be found explicitly.) This has been treated using a path integral
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approach [5–12], supersymmetric quantum mechanics [13, 14], a group theoretical approach
[15–27], as well as, the standard approach [4, 28–32]. Apart from their beautiful mathematical
structure, these solvable potentials provide excellent models in quantum chemistry and nuclear
physics for describing ring-shaped molecules and deformed nuclei. What is still lacking is an
explicit description of scattering problems for these non-central potentials. Despite several
attempts at the problem [16, 12, 31], at present, the potential a/r + c/r2(1 − cos θ) is the only
example of a scattering amplitude which has been calculated [16]. However, in this study, the
authors restrict themselves to the case when the incident wave is along the z-axis.

In [33], we proposed a way which allows pure algebraic calculation of S-matrices for the
systems whose Hamiltonians are related to the Casimir operators Ci of some Lie group G

H = f (Ci) (1)

or

H = f (Ci)|H (2)

where H is some subspace of carrier space and |H denotes the restriction to H. (In the later
case the group G describes fixed energy states of a family of quantum systems with different
potential strength and therefore is called the ‘potential’ group [34].) Namely, the S-matrices
for the systems under consideration are associated with intertwining operators A between
Weyl equivalent representations Uχ and Uχ̃ of G

S = A (3)

or

S = A|H (4)

respectively. (The representations U and Uχ̃ have the same Casimir eigenvalues. Such
representations are called Weyl equivalent.) At this stage we note that the operator A is said
to intertwine the representations Uχ and Uχ̃ of the group G if relation

AUχ(g) = Uχ̃(g)A for all g ∈ G (5)

or

AdUχ(b) = dUχ̃(b)A for all b ∈ g (6)

holds, where dUχ and dUχ̃ are the corresponding representations of the algebra g of G.
Equations (5) and (6) have much restriction power, determining the intertwining operator
up to a constant. Therefore, one can evaluate the S-matrix without writing wavefunctions.
Such approaches were applied to various classes of solvable potentials [35–40]. Among the
class of problems which could be treated using the technique discussed above, there are the
well-known Coulomb and MICZ-Kepler [41, 42] problems (see [39]).

Here we provide an algebraic approach to the scattering problem for the non-spherically
symmetric potentials

V (x) = −γ

r
+ a2

0ε0
s(s + 1)

r2 sin2 θ sin2 ϕ
(7)

which appears among the potentials classified in [2]. Here r, θ, ϕ are spherical coordinates,
and a0 and ε0 stand for the Bohr radius and the ground-state energy of the hydrogen atom,
respectively. We show that the potentials (7) admit the Lie algebra so(5, 1) as the potential
algebra

H = − γ 2

2(C + 4)

∣∣∣∣
Hs

,
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where C is the second-order Casimir operator of so(5, 1), while Hs is a subspace occurring in
the subalgebra reduction so(5, 1) ⊃ so(5) ⊃ · · · ⊃ so(2).

This paper could be considered as a natural continuation of the study started in [27], where
bound-state problems for such potentials were presented. It should be noted that the strength
of the non-central part in that paper was proportional to n2 − 1/4, n = 0, 1, 2, . . . , while in
the present paper it is proportional to s(s + 1), s = 0, 1, 2, . . . . That is why we come to the
algebra so(5, 1) instead of so(4, 1). (The parameter s(s + 1) makes it possible to obtain from
(7) the Coulomb potential.)

2. so(5,1) as a potential algebra

To describe the matter, we require some notation. By SO(5, 1) we denote the connected
component of the group of linear transformations of a six-dimensional Minkowskian space
R5,1 preserving the bilinear form

[ξ, η] = ξ1η1 + · · · + ξ5η5 − ξ6η6. (8)

Let {gµν(θ)} (µ < ν; µ, ν = 1, 2, . . . , 6) be the one-parameter subgroups of SO(5, 1)

consisting of rotations or pseudo-rotations in the ξµ–ξν planes. Then the matrices

aµν = d

dθ
gµν(θ) (9)

form a basis of Lie algebra so(5, 1) with commutation relations

[aij , akl] = δikajl + δjlaik − δilajk − δjkail,

[ai6, aj6] = aij , i, j = 1, . . . , 5,

[aij , ak6] = δikaj6 − δjkai6.

(10)

The generators aij (1 � i < j � 5) form a Lie algebra so(5) of SO(5).
It is well known that the principal most-degenerate (or, class 1) unitary irreducible

representation (UIR) of so(5, 1) can be realized (see, e.g., [43] and references therein) in the
Hilbert space H spanned by scattering states of the Coulomb Hamiltonian h in five dimensions,
where

h = p2

2
− γ

r
, γ > 0 (11)

with x = (x1, x2, . . . , x5), p = (p1, p2, . . . , p5) and

r2 =
5∑

i=1

x2
i , pi = −i

∂

∂xi

, i = 1, 2, . . . , 5. (12)

(We are using units with M = h̄ = 1.) As a prelude to this realization one introduces angular
momentum and Runge–Lenz operators given by

Lij = xipj − xjpi, (13)

Ai = 1

2
(Lijpj + pjLij ) − γ xi

r
. (14)

These operators satisfy the following commutation relations:

[Lij , Lkl] = i(δikLjl + δjlLik − δilLjk − δjkLil), (15)

[Lij , Ak] = i(δikAj − δjkAi), (16)
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[Ai,Aj ] = −2ihLij , (17)

[Lij , h] = [Ai, h] = 0. (18)

Defining now operators

Li6 = −L6i ≡
(

1

2h

)1/2

Ai, (19)

which are well defined in H we obtain for Lαβ, α, β = 1, 2, . . . , 6 the commutation relations
of the Lie algebra so(5, 1)

[Lij , Lkl] = i(δikLjl + δjlLik − δilLjk − δjkLil), (20)

[Li6, Lj6] = −iLij , (21)

[Lij , Lk6] = i(δikLj6 − δjkLi6). (22)

Thus the most-degenerate UIR of so(5, 1) is realized in the Hilbert space H of the scattering
wavefunctions 
(x) corresponding to the fixed energy subspace, with inner product

(
1,
2)H =
∫

R5

∗

1(x)
2(x) d5x, (23)

where d5x = dx1 dx2 · · · dx5. In this realization, the representation operators are given by
equations (13) and (14). If we compute the second-order Casimir operator

C =
∑

i

L2
i6 −

∑
i<j

L2
ij (24)

for this realization, it becomes

C = −4 − γ 2

2h
. (25)

We are looking for the chain so(5, 1) ⊃ so(5) ⊃ · · · ⊃ so(2). According to this the
reduction conditions are

Cso(5) |λmsk〉 = λ(λ + 3) |λmsk〉 , (26)

Cso(4) |λmsk〉 = m(m + 2) |λmsk〉 , (27)

Cso(3) |λmsk〉 = s(s + 1) |λmsk〉 , (28)

L12 |λmsk〉 = k |λmsk〉 , (29)

where

Cso(5) = 1

2

5∑
i,j=1

L2
ij , Cso(4) = 1

2

4∑
i,j=1

L2
ij , Cso(3) = 1

2

3∑
i,j=1

L2
ij . (30)

The parametrization that we seek for x1, x2, . . . , x5 must be such as to make
Cso(5), Cso(4), Cso(3) and L12 particularly simple. We define them as follows

x1 = r sin θ sin ϕ sin α sin β,

x2 = r sin θ sin ϕ sin α cos β,

x3 = r sin θ cos ϕ cos α,

x4 = r sin θ cos ϕ,

x5 = r cos θ
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with 0 � α, θ, ϕ < π, 0 � β < 2π and

d5x = r4 sin3 θ sin2 ϕ sin α dr dθ dϕ dα dβ. (31)

Then

Cso(5) = 1

sin3 θ

∂

∂θ
sin3 θ

∂

∂θ
+

1

sin2 θ

(
1

sin2 ϕ

∂

∂ϕ
sin2 ϕ

∂

∂ϕ
+

1

sin2 ϕ sin2 α

∂

∂α
sin2 α

∂

∂α

+
1

sin2 ϕ sin2 α

∂2

∂β2

)
,

Cso(4) = −
(

1

sin2 ϕ

∂

∂ϕ
sin2 ϕ

∂

∂ϕ
+

1

sin2 θ sin α

∂

∂α
sin α

∂

∂α
+

1

sin2 θ sin2 α

∂2

∂β2

)
,

Cso(3) = −
(

1

sin α

∂

∂α
sin α

∂

∂α
+

1

sin2

∂2

∂β2

)
and L12 = i

∂

∂β
,

while
γ 2

(C + 4)
= 1

r4

∂

∂r
r4 ∂

∂r
+

1

r2
Cso(5) +

2γ

r
. (32)

At this stage we note that, in general, one can use for the construction of the principal
most-degenerate UIR of so(5, 1) the carrier space with any quasi-invariant measure dµ(x)

on R5. The representations with different measure are unitarily equivalent. Although the
representations with different measure are equivalent from the mathematical viewpoint, they
may be related to different physical problems (see below).

It is clear that we must construct the representation in the Hilbert space H′, with inner
product

(
′
1,


′
2)H′ =

∫
R5


′∗
1 (x)
′

2(x) dµ(x), (33)

where

dµ(x) = r2 sin θ sin α dr dθ dϕ dα dβ. (34)

This representation, of course, is unitarily equivalent to the representation constructed in H .
The unitary mapping W which realizes the equivalence is given by

W : 
 → 
′ = (r sin θ sin ϕ) ◦ 
. (35)

where ◦ denotes composition of operators. In this case, the generators, denoted as
L′

αβ, α, β = 1, 2, . . . , 6, are given by

L′
αβ = (r sin θ sin ϕ) ◦ Lαβ ◦ (r sin θ sin ϕ)−1.

That is, for the representation constructed in H′ the Casimir operator, call it C ′, is obtained by

C ′ = (r sin θ sin ϕ) ◦ C ◦ (r sin θ sin ϕ)−1. (36)

Hence
γ 2

(C ′ + 4)
= ∂2

∂r2
+

2

r

∂

∂r
+

1

r2

(
∂2

∂θ2
+

cos θ

sin θ

∂

∂θ
+

1

sin2 θ

∂2

∂ϕ2

)

+
1

r2 sin2 θ sin2 ϕ

(
1

sin α

∂

∂α
sin α

∂

∂α
+

1

sin2 α

∂

∂β

)
+

2γ

r
. (37)

Let Hs be a subspace spanned by |λmsk〉 with fixed s and k. Then the operator (37)
restricted to Hs becomes a differential operator in r, θ, ϕ; it is found that

γ 2

(C ′ + 4)

∣∣∣∣
Hs

= ∂2

∂r2
+

2

r

∂

∂r
+

1

r2

(
∂2

∂θ2
+

cos θ

sin θ

∂

∂θ
+

1

sin2 θ

∂2

∂ϕ2

)
− s(s + 1)

r2 sin2 θ sin2 ϕ
+

2γ

r
.

(38)
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Hence the Hamiltonian

H = −1

2
∇2 − γ

r
+

s(s + 1)

2r2 sin2 θ sin2 ϕ
, s = 0, 1, 2, . . . (39)

is related to so(5, 1) in the sense that the following relation holds

H = − γ 2

2(C ′ + 4)

∣∣∣∣
Hs

. (40)

As was mentioned before representations with different measure may be related to different
physical problems. We see that the principal most-degenerate UIR of so(5, 1) realized in the
Hilbert space H′ with the measure (34) provide descriptions of scattering states for Hamiltonian
(39), whereas Coulomb scattering in five dimensions is described by the principal most-
degenerate UIR of so(5, 1) realized in the Hilbert space H with the measure (31). These
results also establish a correspondence between Coulomb problem in five dimensions and the
problem governed by Hamiltonian (39) in three dimensions. So, the scattering amplitude for
(39) can also be obtained from the Coulomb amplitude.

The operators commuting with H are

L̃2 = L2 +
s(s + 1)

sin2 θ sin2 ϕ
(41)

and

L̃2
z = L2

z +
s(s + 1)

sin2 ϕ
− 1. (42)

They are responsible for separability of H in the spherical coordinates. Moreover, it is not
difficult to see that L̃2 and L̃2

z are related to C ′so(5) and C ′so(4) in the sense that

L̃2 = C ′so(5)|Hs
, L̃2

z = C ′so(4)|Hs
(43)

where

C ′so(5) = (sin θ sin ϕ) ◦ Cso(5) ◦ (sin θ sin ϕ)−1,

C ′so(4) = (sin θ sin ϕ) ◦ Cso(4) ◦ (sin θ sin ϕ)−1.

According to this the angular part Yλms(θ, ϕ) of wavefunctions is given by

Yλms(θ, ϕ) = χ sinm+1 θ sins+1 ϕC
3
2 +m

λ−m(cos θ)C1+s
m−s(cos ϕ), (44)

with the normalization constant

(χ)2 = 21+2m+2s(λ − m)!(m − s)!(s!)2�2
(

3
2 + m

)
(3 + 2λ)(2 + 2m)

π2(λ + m + 2)!(m + s + 1)!
. (45)

Here Cλ
n(t) are the Gegenbauer polynomials [44].

Observe that the angle-function Yλms(θ, ϕ) depend on the details of the dynamics. This
is a result of very general properties, shared by all non-central Hamiltonians. It is also worth
noting that the functions Yλms(θ, ϕ) are related to matrix elements of class 1 representations
of so(5) [45] in the bases corresponding to so(5) ⊃ so(4) ⊃ · · · ⊃ so(2) reduction (see
section 3).
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3. Calculation of the S matrix

Once the group structure of the Schrödinger equation with potential (7) has been recognized,
the associated S-matrix can be computed by using equation (4). This requires the use of
matrices which intertwine Weyl-equivalent representations of SO(5, 1) or so(5, 1) in the
bases corresponding to SO(5, 1) ⊃ SO(5) ⊃ · · · ⊃ SO(2) reduction. We find it expedient to
use, for this purpose, equation (5). By realizing the principal series of SO(5, 1) on suitable
Hilbert spaces of some functions we can derive from equation (5) the functional relations for
the kernel of A which allow us to obtain an integral representation for the matrix elements
of A.

We shall start with the most degenerate principal series representations of SO(5, 1)

associated with the cone [45]. These representations can be realized in the space of
infinitely differentiable functions f (ξ) on the upper sheet of the five-dimensional cone
ξ 2

1 + · · · + ξ 2
5 − ξ 2

6 = 0 (ξ6 > 0) that are homogeneous of degree σ = −2 + iρ

f (aξ) = aσ f (ξ), a > 0. (46)

In this realization the group operators U(g) are given by

U(g)f (ξ) = f (g−1ξ). (47)

The different choices of the coordinate system on the cone can lead to different subgroup
reductions of SO(5, 1). The spherical coordinate system corresponding to the subgroup
reduction SO(5, 1) ⊃ SO(5) ⊃ · · · ⊃ SO(2) is given by

ξ = ωζ, ζ = (n, 1), (48)

where ω = ξ6,

n1 = sin θ4 sin θ3 sin θ2 sin θ1,

n2 = sin θ4 sin θ3 sin θ2 cos θ1,

n3 = sin θ4 sin θ3 cos θ2,

n4 = sin θ4 cos θ3,

n5 = cos θ4,

and

dn = sin3 θ4 sin2 θ3 sin θ2 dθ4 dθ3 dθ2 dθ1. (49)

From equation (46) it follows that the homogeneous function is defined uniquely by its
values on the four-dimensional sphere S4. Consequently, the most degenerate principal series
representations of SO(5, 1) can be realized on L2(S

4)

Uσ (g)f (n) = (ωg)
σ f (ng), (50)

where ωg and ng are defined from

g−1ζ = ωgζg, (51)

where ζ ≡ (n, 1) and ζg ≡ (ng, 1). The operator A defined by

Af (n) =
∫

K(n, n′)f (n′) dn′ (52)

intertwines representations σ and −4 − σ , i.e.

AUσ (g) = U−4−σ (g)A (53)

if

K(ng, n
′
g) = (ωg)

2+σ (ω′
g)

2+σK(n, n′). (54)
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In deriving equation (54), we have used the relation

dng = (ωg)
−4 dn. (55)

The kernel, K, is uniquely determined by equation (54) up to a constant and is given by

K(n, n′) = η(1 − n · n′)−4−σ . (56)

The verification of equation (56) is based on the relation

1 − ng · n′
g = (ωg)

−1(ω′
g)

−1(1 − n · n′), (57)

which obviously is a consequence of the relation

[g−1ζ, g−1ζ ′] = [ζ, ζ ′]. (58)

For the scattering systems under consideration we put

η = 2−2+iρ �(2 + iρ)

π2�(−iρ)
.

With this factor the operator A becomes unitary for σ = −2+iρ (see equation (63)). Moreover,
for γ < 0 (i.e. for an attractive Coulomb potential) it produces poles which correspond to
bound states (see equation (68)).

Taking into account the fact that 4-dimensional spherical harmonics of degree λ, YλK [45]

YλK(n) = �eik3θ1

2∏
j=0

C
kj+1+(3−j)/2
kj −kj+1

(cos θ4−j ) sinkj+1 θ4−j , (59)

with

(�)2 = 1

2π

2∏
j=0

22kj+1+1−j (kj − kj+1)!(3 − j + 2kj )�
( 3−j

2 + kj+1
)

π�(kj + kj+1 + 3 − j)

forms bases in L2(S
4), corresponding to SO(5, 1) ⊃ SO(5) ⊃ · · · ⊃ SO(2) reduction, we

have the following integral representation for the matrix elements of A

〈λ′K ′|A|λK〉 =
∫

K(n, n′)YλK(n′)Y ∗
λ′K ′(n) dn dn′, (60)

where λ ≡ k0 � k1 � k2 � |k3| and the symbol K denotes the sequence (k1, k2, k3). The
numbers ki are all integers.

By using the expansion

(1 − n · n′)−2−iρ =
∞∑

ν=0

bνC
3/2
ν (n · n′), (61)

where

bν = ν!(2ν + 3)

2�(3 + ν)

∫ π

0
(1 − cos θ)−2−iρC3/2

ν (cos θ) sin3 θ dθ

= 2−1−iρ �(−iρ)(2ν + 3)

�(2 + iρ)

�(2 + iρ + ν)

�(2 − iρ + ν)
(62)

we have

〈λ′K ′|A|λK〉 = Aλδλλ′δKK ′ (63)

with

Aλ = �(2 + iρ + λ)

�(2 − iρ + λ)
.
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In arriving at equation (63) we have used the addition formula

C3/2
ν (n · n′) = 8π2

2ν + 3

∑
K

YνK(n)Y ∗
νK(n′) (64)

and the orthogonality relation∫
dnYνK(n)Y ∗

ν ′K ′(n) = δνν ′δKK ′ . (65)

Once the matrix elements of A have been obtained the S-matrix can be computed by using
of equation (4). According to (63) we have

S(θ, ϕ; θ ′, ϕ′) =
∑
λm

AλYλms(θ, ϕ)Y∗
λms(θ

′, ϕ′). (66)

Then the partial wave expansion of the scattering amplitude f (θ, ϕ; θ ′, ϕ′) is defined by [46]

f (θ, ϕ; θ ′, ϕ′) = 2π

ip

∑
λm

(Aλ − 1)Yλms(θ, ϕ)Y∗
λms(θ

′, ϕ′). (67)

Since ∑
λm

Yλms(θ, ϕ)Y∗
λms(θ

′, ϕ′) = δ(cos θ − cos θ ′)δ(ϕ − ϕ′)

we can omit unity in the bracket in (67) when θ �= θ ′, ϕ �= ϕ′, leaving

f (θ, ϕ; θ ′, ϕ′) = 2π

ip

∑
λm

AλYλms(θ, ϕ)Y∗
λms(θ

′, ϕ′). (68)

The sum in (68) may be evaluated as follows. We start with the formula

η(1 − n · n′)−2−iρ =
∑
λK

AλYλK(n)Y ∗
λK(n′) (69)

with

YλK(n) = (sin θ4 sin θ3)
−1Yλk1k2(θ4, θ3)Yk2k3(θ2, θ1) (70)

where Yk2k3(θ2, θ1) is ordinary (2-dimensional) spherical harmonics of degree k2. Putting
θ ′

2 = θ ′
1 = 0 and using

Yk2,k3(0, 0) = δk3,0

(
2k2 + 1

4π

)1/2

, Yk2,0(θ2, θ1) =
(

2k2 + 1

4π

)1/2

Pk2(cos θ2)

we get

η[1 − sin θ4 sin θ ′
4 sin θ3 sin θ ′

3 cos θ2 − sin θ4 sin θ ′
4 cos θ3 cos θ ′

3 − cos θ4 cos θ ′
4]−2−iρ

= 2k2 + 1

4π

1

sin θ4 sin θ ′
4 sin θ3 sin θ ′

3

∑
λk1k2

AλYλk1k2(θ4, θ3)Yλk1k2(θ
′
4, θ

′
3)

×Pk2(cos θ2), (71)

where Pk are Legendre polynomials. We multiply both sides of (71) by Pk(cos θ2) sin θ2 and
integrate with respect to θ2 from 0 to π . Taking into consideration the orthogonality relations
for Legendre polynomials we obtain an integral representation for sum in (68). Hence, the
following integral representation for the scattering amplitude holds

f (θ, ϕ; θ ′, ϕ′) = 2π

ip
ηb

∫ π

0
(a − b cos α)−2−iρPs(cos α) sin α dα (72)
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where

a = 1 − sin θ sin θ ′ cos ϕ cos ϕ′ − cos θ cos θ ′ (73)

and

b = sin θ sin θ ′ sin ϕ sin ϕ′. (74)

We shall now ascertain the connection of the amplitude (72) with the associated Legendre
functions. Putting

cosh δ = a√
a2 − b2

, sinh δ = b√
a2 − b2

(75)

we have

f (θ, ϕ; θ ′, ϕ′) = (2π)2

ip
ηb|a2 − b2|− 2+iρ

2

∫ π

0
(cosh δ − sinh δ cos α)−2−iρ

×Ps(cos α) sin α dα. (76)

On comparing this formula with formula 10.3.7(1) of [45], we obtain

f (θ, ϕ; θ ′, ϕ′) = (2π)3/2

ip
ηb|a2 − b2|− 2+iρ

2
�(1 + iρ)

�(−1 − iρ − s)

1√
sinh δ

P
− 1

2 −s

− 3
2 −iρ

(cosh δ). (77)

It is known that P
±(k+1/2)
ν in case k = 0, 1, 2, . . . reduce to a finite number of terms [47].

In particular we have

P −1/2
ν (z) =

(
2

π

)1/2
(z2 − 1)

2ν + 3
{[z + (z2 − 1)1/2]ν+1/2 − [z + (z2 − 1)1/2]ν−1/2}

Therefore

f (θ, ϕ; θ ′, ϕ′) = 2iρ

ip

�(1 + iρ)

�(−iρ)
[(a − b)−1−iρ − (a + b)−1−iρ] (78)

when s = 0, where

a ± b = 1 − sin θ sin θ ′ cos(ϕ ± ϕ′) − cos θ cos θ ′

(also see the appendix).
We see that the amplitude (77) does not reduce to the Coulomb amplitude [48]

fCoul(θ, ϕ; θ ′, ϕ′) = 2iρ

ip

�(1 + iρ)

�(−iρ)
[1 − sin θ sin θ ′ cos(ϕ − ϕ′) − cos θ cos θ ′]−1−iρ (79)

when s is set equal to zero. The reason for this discrepancy lies in the fact that the
Schrödinger equation with the potential (7) is supplemented with the boundary condition
on the wavefunction at ϕ = π .

To make this point more precise we reexamine the angular part of the wavefunction for
s = 0; using equation

C1
m(cos ϕ) = sin(m + 1)ϕ

sin ϕ

we find from (44) that

Yλm0(θ, ϕ) = χ0 sinm+1 θC
3
2 +m

λ−m(cos θ) sin(m + 1)ϕ (80)

with

(χ0)
2 = (3 + 2λ)

22+2m�2(m + 3/2)(λ − m)!

π2(λ + m + 2)!
. (81)

Thus when s = 0, the angular part of the wavefunction is

Yλm0(θ, ϕ) = 1

i
[Yλ+1,m+1(θ, ϕ) − Yλ+1,m+1(θ,−ϕ)]

where we have used the well-known relation between Legendre and Gegenbauer functions.
Hence, instead of the expression (79) for the scattering amplitude, we have (78).
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Appendix. An alternative proof for (78)

In this appendix, we give a direct calculation of the scattering amplitude ( 68) for s = 0

f (θ, ϕ; θ ′, ϕ′) = 2π

ip

∑
λm

Aλ(χ0)
2 sinm+1 θC

3
2 +m

λ−m(cos θ) sinm+1 θ ′C
3
2 +m

λ−m(cos θ ′)

× sin(m + 1)ϕ sin(m + 1)ϕ′, (A.1)

where χ0 is given by (81). The summation over m can be performed as follows. We start with
the formula 9.4.2(3) of [45]

Cν
l (cos �) = �(2ν − 1)

[�(ν)]2

l∑
µ=0

22µ�2(ν + µ)(l − µ)!(2µ + 2ν − 1)

�(l + µ + 2ν)
sinµ θC

ν+µ

l−µ(cos θ)

× sinµ θ ′Cν+µ

l−µ(cos θ ′)Cν−1/2
µ (cos φ) (A.2)

where cos � =.cos θ cos θ ′ + sin θ sin θ ′ cos φ. If we take the limit for ν → 1/2 and use

lim
p→0

�(p)Cp
n (cos φ) = 2 cos nφ

n

we get the equality

C
1/2
l (cos �) = 2

π

l∑
µ=0

22µ�2(1/2 + µ)(l − µ)!

�(l + µ + 1)
sinµ θC

1/2+µ

l−µ (cos θ)

× sinµ θ ′C1/2+µ

l−µ (cos θ ′) cos µφ. (A.3)

Further, putting m + 1 = µ and λ + 1 = l in (A.1) and taking into account formula (A.3), we
find from (A.1) that

f (θ, ϕ; θ ′, ϕ′) = 1

2ip

∑
l

(2l + 1)
�(1 + iρ + l)

�(1 − iρ + l)

[
C

1/2
l (cos �−) − C

1/2
l (cos �+)

]
(A.4)

where cos �± =.cos θ cos θ ′ + sin θ sin θ ′ cos cos(ϕ ± ϕ′).
If we use the relation∑

l

(2l + 1)
�(1 + iρ + l)

�(1 − iρ + l)
C

1/2
l (z) = 2iρ+1 �(1 + iρ)

�(−iρ)
(1 − z)−1−iρ (A.5)

in equation (A.4), we get the result obtained above (78).
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